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Abstract— In this paper we study under which conditions 

equality of some pairs of dicardinal functions such as 

weight-coweight and densification-codensification, holds. We 

obtain some useful results on “bounds of S", the set P of all 

p-sets and the set Q of all q-sets by choosing the class of all 

ditopological texture spaces or the subclass satisfying axiom T0. 

 

Index Terms— Texture, Ditopological texture space, 

Cardinal function, Dicardinal function.  

 

I. INTRODUCTION 

  The concept of fuzzy structure introduced first by L. M. 

Brown in [13, 14] is renamed texture space by being 

developed in [10, 9]. The structure open the way for 

investigating mathematical concepts without any 

complement in consideration of the fact that, in a texture 

space ,  doesn’t need to be closed under 

set-theoretical complement. Based on the structure of texture 

space, it is obvious intiutively that a convenient topology on a 

texture space doesn’t need to hold the existence of the known 

duality of interior and closure and so not need to hold both 

axioms of open sets and ones of closed sets. 

L. M. Brown et al. present first two papers in 2004 and last 

one in 2006 [5, 6, 7]. In the first of them subtitled ’Basic 

concepts’, the authors introduce a systematic form of the 

concepts of direlation, difunction, the category dfTex 

ditopological texture space in a categorical setting. In second 

paper, the category dfDitop of ditopological texture spaces 

and bicontinuous difunctions is defined. The subject of third 

paper is on separation axioms in general ditopological texture 

space. In a ditopological setting , L. M. Brown and M. M. 

Gohar study compactness in 2009, and strong compactness 

one year later [11, 21]. 

There is no doubt that cardinal invariants play a major role 

in general topology of which set theory forms the basis. They 

are most useful tools in classifying topological spaces; so 

they distinguish some important classes of topological 

spaces, e.g. compact spaces, finally compact spaces, the 

spaces with a countable basis, and separable spaces. Also, the 

remarkable feature of them is that they need not have an 

additional structure on topological spaces. Moreover, 

cardinal invariants enable us to compare quantitively 

topological properties, and to generalize the some known 

results of them. 

The theory of cardinal functions contributed by many 

researchers has been being developed since 1920. In the 

1920’s, Alexandroff and Urysohn show that every compact, 

perfectly normal space has cardinality  [1]. In 1940’s, it 
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is shown by Hewitt, Marczewski, and Pondiczery that a 

product of at most  separable space is separable [22, 27, 

29]. In 1965, one of Groot’s results which generalizes 

Alexandroff and Urysohn’s result above states that a 

Hausdorff space in which every subspace is Lindelöf has 

cardinality  [17]. In 1969, Arhangel’skii show that 

every Lindelöf, first countable, Hausdorff space has 

cardinality  [2]. 

In the paper [28], we gave first concept of dicardinal 

function and then defined (co)weight, (co)net weight, 

(co)densification, (co)pseudo character. They are ones of 

most useful tools in classifying ditopological texture spaces. 

Also, we investigated relationships between the set  (  or 

) and eight dicardinal functions defined on ditopological 

texture spaces as seen from above. We represented dicardinal 

functions and some important theorems for (a particular 

subclass of) the class of all ditopological texture spaces: for 

every ditopological texture space , 

 and ; if  is , 

then  and 

. In particular, for every 

Kolmogorov ditopological coseparated texture space, 

. If  is , then 

. 

In this study, as a continuation of our paper [28], we 

investigate under which conditions equality of the pair of 

dicardinal functions, weight-coweight and 

densification-codensification, holds. Also, in Kolmogorov 

ditopological texture spaces, we show that the cardinality of 

 is bounded by the dicardinal functions weight and 

coweight. In the section 2 titled ’Texture Spaces’, we recall 

the basic definitions of texture space, ditopology on the 

texture space and then, some definitions and theorems 

regarding the subjects. The concepts of ordinals, cardinals, 

cardinality of a set and cardinal functions and some theorems 

which are related to cardinals are given in the section 3. 

Finally, in the last section, we give the definition of 

dicardinal function in ditopological texture spaces. Then, we 

represent dicardinal functions and some important theorems 

for (a particular subclass of) the class of all ditopological 

texture spaces: for every complemented ditopological texture 

space,  and ; for 

every Kolmogorov ditopological texture space, 

.  

 

II. TEXTURE 

The following definitions and propositions were 

introduced in [4, 3, 10, 9, 5, 6, 7, 8, 18, 19, 13, 14, 12, 30]. 

A texturing on a non-empty set  is a set  containing  

of subsets of  with respect to inclusion satisfying the 
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conditions:   is a complete lattice   is 

completely distributive,   separates the points of , 

 Meets  and finite joins  coincide with 

intersections  and unions , respectively.  is then 

called texture. 

For each , the -set  is defined by  

 
and -set  

 
We recall that a texture  is said coseparated if  

  

We define  and . 

Let  be a texture and  a function.  is said 

a complementation on  and  is called 

complemented texture if the following conditions are 

satisfied: for every sets  

    1.  , 

    2.  .  

It is obvius that  is a bijection. Furthermore, for each 

, the restriction  of  is injective. 

 

Proposition 1  For every complemented texture,   

    1.  , 

    2.  .  

Definition 1 Let  be a texture, and  subsets of . 

 is called a ditopological texture space, and 

the pair  be a ditopology on  if  satisfies []  

    1.    

    2.    

    3.    

    4.    

    5.    

    6.    

 Let  be a complemented texture and  a 

ditopology on .  is said a complemented 

ditopology on  and  is called a 

complemented ditopological texture space if the following 

condition is satisfied: for every ,  

 
Definition 2 Let  be a ditopological 

texture space, and  a subset of .  is a base (cobase) 

for  if, for all , there exists a subset  of  

such that .  

  

Proposition 2  For every ditopological texture space, the 

following statements are equivalent:   

    1.   is a base for ,  

    2.    

    3.    

Proposition 3  For every ditopological texture space, the 

following statements are equivalent:   

    1.   is a cobase for ,  

    2.    

    3.    

Definition 3 Let  be a ditopological 

texture space. The interior and the closure of the set  is 

defined, respectively:  

  

Definition 4 A set  is said dense (codense) in  

if .  

Definition 5 Let  be a ditopological 

texture space.  denote the set of arbitrary joins of 

sets in  and  the set of arbitrary intersections 

of sets in .  is said  if  

  

or equivalently,  

  

Proposition 4  The following are characteristic properties 

of  ditopological texture space:   

    1.    

    2.   

III. CARDINAL FUNCTIONS 

The following definitions and propositions were 

introduced in [23, 24, 25, 26]. 

A set  is called transitive if and only if 

. An ordinal  is a transitive 

set such that all  are transitive. The least infinite ordinal 

is denoted by . Also, we recall that a cardinal is an ordinal 

that there is no bijection from itself to a smaller ordinal. 

Let  be a set. Assuming axiom of choice, there exists an 

ordinal that can be mapped one-to-one onto . The smallest 

one of the ordinals is called the cardinality or cardinal 

number of , written as . We recall that the class of 

cardinals is well-ordered. 

The binary operations of addition and multiplication of 

cardinals are defined by means the operations of set union 

and Cartesian product as follows: 

 and , 

respectively, where  and  are cardinals. 

The following proposition is useful for our proofs in the 

paper :  

Proposition 5  If one of cardinal numbers  and  is 

nonzero and the other infinite, then 

.  

 We recall that a cardinal function is a function  from the 

class of all topological spaces into the class of all infinite 

cardinals such that, if  and  are homeomorphic, then 

. 

The interested reader is referred to [1, 2, 15, 16, 17, 20, 22, 

23, 24, 25, 27, 29, 26] for more information about cardinals 

and cardinal functions. 

IV. MAIN RESULTS 

Theorem 6 [28] For every texture space , 

.  

  

Theorem 7 [28] If a texture  is coseparated, then 

.  

Definition 6 [28] A function  from the class of all 

ditopological texture spaces (or a particular subclass) into 

the class of all infinite cardinal numbers is called a 

dicardinal function if, for every pair  

of ditopological texture spaces,  

  

where  are isomorphic. 
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Definition 7 [28] Let  be a ditopological 

texture space.  and  are defined as the number of 

open sets in  plus  and the number of closed sets in  plus 

, respectively.  is defined as the number of sets in 

 plus .  

 [28] Clearly, . 

Also,  and  don’t need to dominate each other.   

Theorem 8  If  is a complemented ditopological texture 

space, then .  

Proof Let  be a complemented 

ditopological texture space. Define a function  by, 

for each , . Since ,  is the 

restriction of . Then,  is injective and so . Similar 

arguments can be used to show that . This completes 

the proof.   

Theorem 9 [28] If a ditopological texture space 

 is  (Kolmogorov), then 

.  

Corollary 10 [28] For every Kolmogorov ditopological 

coseparated texture space, .  

Definition 8 [28] Let  be a ditopological 

texture space. The weight and coweight of  are defined as 

follows,  

 

 
 respectively.  

Theorem 11  For every ditopological texture space 

, we have   

    1.    

    2.    

Proof 1.  Let  be a base for the ditopological texture 

space  such that . Then  and so 

.  

    2.  Let  be a cobase for the ditopological texture space 

 such that . Then  and so 

.  

Theorem 12  If  is a complemented ditopological texture 

space, then .  

Proof Let  be a complemented 

ditopological texture space and  a base for  such that 

. Let us set . Then 

. Given an arbitrary closed set . Then there 

exists  such that . Since  be a base for , 

there exists  such that  Therefore, 

. It follows from Proposition 1 that 

 where 

; this shows that  is a 

cobase for . Define a function  such that if 

, then . It is clear that  is well-defined. 

That  is injective follows from the fact that for each , 

the restriction  of  is injective. Furthermore, by the 

definition of , it is easily seen that  is surjective; thus 

 and so . 

Let  be a cobase for the ditopological texture space  

such that . Set . 

Then . Given an arbitrary open set . Then there 

exists  such that . Since  be a cobase for , 

 It follows from Proposition 1 that 

 where 

; this shows that  is a base 

for . Define a function  such that if , then 

. Then  is well-defined. The fact that  is 

injective follows from that for each , the restriction 

 of  is injective. Moreover, by the definition of , it 

can be shown that  is surjective; thus  and so 

.   

Corollary 13  If  is a complemented ditopological 

texture space, then 

.  

  By Remark 4, Theorem 8 and Theorem 12, that the 

statement above is valid can be easily seen.   

Theorem 14  If a ditopological texture space 

 is  (Kolmogorov), then 

.  

Proof Let a ditopological texture space  be 

,  a base for  such that , and  a cobase for 

 such that . Now, let us define a function 

 by, for each , 

  

Then  is clearly well-defined. Given two -sets  

with . Since  is , by Proposition 4, 

. In the case , since  is a 

base for , by Proposition 2, . 

Moreover, the fact that  follows from that  and 

. Therefore,  and  Thus 

 In the case , since  is a cobase for , 

by Proposition 3, . Furthermore, it 

follows from  and  that . Hence  

and . Thus  This shows that  is 

injective. Then . Since 

 and , 

 and so .   

Corollary 15  For every Kolmogorov complemented 

ditopological coseparated texture space, 

.  

Proof By Theorem 7, Theorem 12 and Theorem 14, that 

the statement above is valid can be easily seen.   

Definition 9 [28] Let  be a ditopological 

texture space. A subset  of  is said densifier (codensifier) 

in  if  is dense (codense) in .  

  

Definition 10 [28] The densification and codensification 

of  are defined as follows,  

 

 

 

 

 respectively.  

 Now, we show that, in a ditopological texture space , 

how there are relationships between (co)weight and 

(co)densification.  

Theorem 16 [28] For every ditopological texture space 

, we have   

    1.    

    2.    

Corollary 17  For every ditopological texture space 

, we have   

    1.    
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    2.    

  

Proof By Theorem 11 and Theorem 16, that the statement 

above is valid can be easily seen.   

Theorem 18  If  is a complemented ditopological texture 

space, then .  

Proof Let  be a complemented 

ditopological texture space and  a densifier of . Let us set 

. By the definition of 

complementation on a texture, 

. By the definitions of 

interior and closure, and Proposition 1, 

 and so 

. Since  is a densifier of , 

. Hence ; that is,  

is a codensifier of . Now, let us define a function 

 by, for each , . Then, it 

is clear that  is well-defined. Moreover, it can be shown that 

 is a bijection; that is,  and so 

. 

Let  be a codensifier of . Let us set 

. By the definition of 

complementation on a texture, 

. By the definitions of interior 

and closure, and Proposition 1, we have 

 and so 

. Since  is a codensifier of , 

. Hence ; 

that is,  is a densifier of . Now, let us define a function 

 by, for each , . Then, it is 

clear that  is well-defined. Moreover, it can be shown that 

 is a bijection; that is,  and so 

. This completes the proof.   

Corollary 19  If  is a complemented ditopological 

texture space, then 

.  

Proof By Corollary 13, Theorem 16 and Theorem 18, that 

the statement above is valid can be easily seen. 
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